
UCRL-CONF-215232

Scalable Dynamic
Instrumentation for BlueGene/L

Martin Schulz, Dong Ahn, Andrew Bernat, Bronis
R. de Supinski, Steven Y. Ko, Gregory Lee, Barry
Rountree

September 9, 2005

Workshop on Binary Instrumentation and Applications
St. Louis, MO, United States
September 18, 2005 through September 18, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Scalable Dynamic Binary Instrumentation for Blue Gene/L

Martin Schulz1, Dong Ahn1, Andrew Bernat2, Bronis R. de Supinski1,
Steven Y. Ko3, Gregory Lee4, Barry Rountree5

1Lawrence Livermore National Laboratory, Livermore, CA, USA
{schulzm,ahn1,bronis}@llnl.gov

2University of Wisconsin, Madison, WI, USA, bernat@cs.wisc.edu
3University of Illinois, Urbana-Champaign, IL, USA, sko@cs.uiuc.edu

4University of California, San Diego, CA, USA, gllee@cs.ucsd.edu
5University of Georgia, GA, USA, rountree@cs.uga.edu

Abstract

Dynamic binary instrumentation for performance analysis on
new, large scale architectures such as the IBM Blue Gene/L
system (BG/L) poses new challenges. Their scale—with po-
tentially hundreds of thousands of compute nodes—requires
new, more scalable mechanisms to deploy and to organize bi-
nary instrumentation and to collect the resulting data gathered
by the inserted probes. Further, many of these new machines
don’t support full operating systems on the compute nodes;
rather, they rely on light-weight custom compute kernels that
do not support daemon-based implementations.

We describe the design and current status of a new imple-
mentation of the DPCL (Dynamic Probe Class Library) API
for BG/L. DPCL provides an easy to use layer for dynamic
instrumentation on parallel MPI applications based on the
DynInst dynamic instrumentation mechanism for sequential
platforms. Our work includes modifying DynInst to control
instrumentation from remote I/O nodes and porting DPCL’s
communication to use MRNet, a scalable data reduction net-
work for collecting performance data. We describe extensions
to the DPCL API that support instrumentation of task sub-
sets and aggregation of collected performance data. Over-
all, our implementation provides a scalable infrastructure that
provides efficient binary instrumentation on BG/L.

1 Motivation

Dynamic binary instrumentation is an attractive technique for
the implementation of performance analysis tools. It requires
no modifications to the source code or the linking process and
enables tools and users to adjust the type and amount of mea-
surements during program execution. Many performance anal-
ysis tools are layered on top of DynInst [4], an API to dy-
namically insert arbitrary code snippets into running applica-
tions, and using DynInst, several projects target dynamic in-
strumentation for parallel applications. This includes perfor-
mance monitoring infrastructures like OMIS [8] or DPCL [6],
and tools like Paradyn [10] or Tool Gear [9].

When applying dynamic binary instrumentation to new,
large scale architectures such as the IBM Blue Gene/L sys-
tem (BG/L), we face new challenges. The scale of such

machines—with potentially hundreds of thousands of compute
nodes—requires new and scalable mechanisms to deploy and
organize binary instrumentation and to collect the resulting
data gathered by the inserted probes. Further, many of these
new machines don’t support full operating systems on the
compute nodes; instead, they use light-weight custom compute
kernels that do not support DynInst’s traditional “mutator–
daemon” model.

In this paper we describe an implementation of dynamic
instrumentation on BG/L that overcomes the limitations de-
scribed above. We base our efforts on the Dynamic Probe
Class Library (DPCL) [6] and provide a new, DPCL compat-
ible library for BG/L. As part of this, we modify DynInst to
control instrumentation from remote daemons and we deploy
a scalable data reduction network to collect the acquired per-
formance data. Users can access this new instrumentation in-
frastructure using the standard DPCL class hierarchy and API,
which supports existing DPCL-based tools on BG/L.

The software is currently still under development, but first
results are encouraging. BG/L’s debug interfaces enable an ef-
ficient instrumentation of remote compute nodes using a mod-
ified version of DynInst as well as a clean integration into
BG/L’s job launch and control infrastructure. Further, the per-
formance of data transfers from the compute node through the
scalable data communication mechanism is low overhead and
shows good scaling behavior.

2 Blue Gene/L

Blue Gene/L is large scale parallel system developed jointly by
IBM and the Lawrence Livermore National Laboratory. In its
final form, it will consist of 65536 compute nodes, each with
a dual-core (PowerPC 440) ASIC, resulting in an overall peak
performance of 367 TFlops. All compute nodes are connected
by both a torus network (for point-to-point communication)
and a tree network (for collectives). A full description of the
architecture is available in an SC2002 paper [3].

The machine is divided into groups of 64 nodes1 and each
node is associated with a separate I/O node responsible for
all external communication including file I/O and TCP client

1The concrete number of nodes per I/O node is machine specific: the BG/L
architecture can support between eight and 64 nodes per I/O node.



MRNet
Node

Other Nodes

Other MRNet Nodes

P P

Node

P P

Node

P P

Node

La
un

ch
In

te
rf

ac
e

D
P

C
L 

C
la

ss
H

ie
ra

rc
hy

Command Processing
and

Encoding

DPCL−based
Performance

Tool

BG/L
Infra−

structure
and

Launcher

64x

MRNet−lib Client Statically Linked Snippet Code

MPI Application

1024x

P P

Node

Tree Network

I/O Node

CIOD

PC

Dbg

MRNet−Server

MRNet−Client

Filter

Data

Front−end Node

MRNet−lib

Startup

Launch

Control

Startup

Figure 1: Architecture of DPCL on BG/L.

socket connectivity. I/O nodes, which are of the same node ar-
chitecture as compute nodes, communicate with the compute
nodes using the tree network and are connected to the outside
world through Gigabit Ethernet. In addition to the actual sys-
tem, the BG/L setup at LLNL provides 14 frontend (login and
system) nodes, as well as a large disk array.

On the software side, each compute node runs a custom light
weight kernel (CNK or Compute Node Kernel). This kernel
does not include any support for scheduling or multi-tasking
and only directly implements light-weight system calls. A
larger subset of standard Unix system calls are “function
shipped” to the I/O node, which executes them as a proxy for
the compute node and returns the results. Since the CNK only
supports one thread per core, tools as well as runtime systems
can not rely on daemons in their software architecture.

On the I/O node, BG/L deploys a restricted operating sys-
tem based on Linux, which provides limited multi-tasking and
threading support. The central component running on every
I/O node is the CIOD. This daemon manages the communi-
cation between frontend and compute nodes, executes system
call requests from the compute nodes, and provides I/O access
to applications. In addition, the CIOD allows tools to start and
control one additional I/O node daemon, which in turn can
communicate with the CIOD and control the compute nodes
using a proprietary debugging interface provided by the CIOD.
Debuggers, such as TotalView, use this additional daemon to
implement their functionality [5].

3 Architecture

Our BG/L implementation of the DPCL interface consists of
four major building blocks: the I/O node daemon support; a
port of DynInst to BG/L; MRNet [11]; and an MPI job con-
trol mechanism based on BG/L’s MPI debugger interface. We
port DynInst to BG/L to provide remote node instrumentation.
We use MRNet, which provides a scalable data collection net-
work with data reduction capabilities, for the DPCL communi-
cation infrastructure. Finally, the debugger interface provides

C
IO

D
In

te
rf

ac
eD
yn

In
st

fo
r 

B
G

/L

DPCL
Command
Decoding

and 
Processing

C
om

ut
e 

N
od

e
C

on
tr

ol
 v

ia
 C

IO
D

D
W

A
R

F

DPCLd

Compute Nodes

MRNet Nodes
Front−end Node

Data Commands

Data
Sockets

Up−Stream
Filter

Filter
Down−Stream

Figure 2: DPCL daemon architecture.

portable parallel job launch and attach facilities. The complete
architecture is shown in Figure 1.

Tools run on one of the system’s frontend nodes and access
the BG/L DPCL library using the existing2 DPCL class hier-
archy. The library has access to BG/L’s infrastructure through
the launch interface, which it can use to start and terminate ap-
plication processes on compute nodes. During job startup, the
library also uses this interface to start a tool daemon on the set
of I/O nodes associated with a job’s partition [7].

Once both the application and daemons have been started,
the system initializes a communication tree from the frontend
to all participating I/O nodes. At the same time, the application
connects to the communication tree through the respective I/O
node (see also Figure 2). Note that the application must be
transparently pre-linked with a thin communication client and
potential DynInst code snippets since the BG/L CNK does not
support dynamic linking.

After initialization, the tool can send instrumentation re-
quests through the DPCL library and the MRNet network to
the tool daemon on the I/O node. The daemon translates the
requests into their respective DynInst calls and forwards them
through BG/L’s proprietary debugger interface to the compute
nodes. Any data collected by the probes is sent directly to
the tool daemon on the I/O node using socket communication
and from there forwarded—after a potential data reduction or
aggregation—to the consuming tool running on the frontend.

3.1 DynInst for BG/L

DynInst is an Application Program Interface designed to al-
low rewriting binary executables at runtime. Instead of instru-
menting every potentially interesting point in the code, this
approach allows instrumentation to be selectively inserted and
removed while the program is executing, thus reducing the im-
pact of measurement on the experiment.

DynInst first parses the binary image of the target applica-
tion and provides users the capability to find potential instru-
mentation locations. At these spots users can then use DynInst
calls to insert arbitrary code snippets. This is accomplished us-
ing trampoline code: an instruction at the appropriate location

2We extended the class hierarchy slightly to improve scalability; the API
is, however, still backwards compatible.



Save RegistersInstruction 1

Instruction 2

JUMP Snippet

Instruction 4

Pre−Snippet

Snippet 1

Post−Snippet

Restore Registers

Instruction 3

JUMP back

Figure 3: Inserting a code snippet using DynInst.

is replaced by a local branch to an unused space in memory
where the new code has been written. The instruction that was
replaced is executed as part of the patch, and the last instruc-
tion of the patch returns control back to the regular execution
path. This is further illustrated in Figure 3.

A tool using DynInst is usually implemented using a sepa-
rate process or daemon, called the mutator, and accesses the
target application, the mutatee, using a debugging interface.
On Linux, e.g., DynInst uses the ptrace interface and its ca-
pability to read and write address locations in other processes’
address spaces to insert code snippets. Further, DynInst uses
the same mechanism for process control.

Within IBM’s original DPCL implementation, this mutator
functionality is embedded into a daemon process executing on
all target nodes. Such a daemon-based implementation is not
possible on BG/L, since compute nodes only support one pro-
cess at a time. We solved this problem by running the muta-
tor process as tool daemons on all I/O nodes associated with
the target application. Each mutator daemon controls the sub-
set of compute nodes associated the respective I/O node. For
this, we extend DynInst to control a large number of processes
per DynInst instantiation and port the backend of DynInst to
BG/L’s proprietary debug interface, which enables the control
and modification of remote processes running on the compute
nodes.

The port of DynInst itself is based on a combination of
the DynInst versions for Linux and PowerPC/AIX. The for-
mer is useful, since the I/O nodes run based on an embedded
and stripped down version of Linux, while the latter covers
most aspects of the instruction set architecture of the embed-
ded PowerPC core.

3.2 Adapting MRNet for BG/L

The original DPCL implementation uses a socket-based com-
munication infrastructure to connect all DPCL daemons di-
rectly to the tool running on the frontend node. The resulting
star-shaped topology is, however, not scalable and hence not
suited for systems like BG/L. When used on the full system,
it would require 64K individual socket connections, exceeding
the limit on open connections on most operating systems as
well as representing a severe bottleneck.

We replaced the communication mechanism with MR-
Net [11], a scalable multicast/reduction network. MRNet uses
a tree topology for all its communication needs (see Figure 4).

The root of the tree is the consuming tool and is executed on
the frontend; the leaves are the processes on all compute nodes
participating in the target application; the second level nodes
are implemented within the BG/L tool daemons on the I/O
nodes; and the remaining internal nodes are supplementary
tool daemons running either on additional frontends or other
computational resources connected to the machine.

The first level of the tree topology (between the compute
and the I/O node) is given by the machine architecture and the
distribution of compute tasks onto the compute nodes. The
topology of the remaining levels of the MRNet tree can be de-
fined by the user or tool developer depending on the expected
communication needs and the availability of external nodes.

At startup, our DPCL library gathers the topology infor-
mation and creates a matching MRNet topology tree. It also
launches the I/O node tool daemons and establishes connec-
tions between the compute nodes and the daemons and be-
tween the daemons and the remainder of the MRNet tree.
Since the startup of the MPI application and the I/O node tool
daemons is controlled by the BG/L infrastructure, we extend
MRNet to connect to independently started components, in-
cluding internal daemon nodes.

Once established, our DPCL implementation uses the MR-
Net tree to multicast commands selectively from the tool to
the DynInst implementations running as part of the I/O node
tool daemon, to receive acknowledgments from DynInst, and
to collect the data produced by the inserted probes. For the
communication with DynInst, we encode the intended com-
mand including all its parameters on the frontend into MRNet
packets and send it as part of an MRNet stream. On the tool
daemon side, we use a separate thread to wait for incoming
packets, decode them, and invoke the matching DynInst rou-
tine. Any acknowledgment or return value is handled the same
way in the reverse direction from the I/O node to the tool fron-
tend.

Any data gathered by the inserted probes is sent from the
application process to the tool frontend using a thin MRNet
backend library as part of the inserted probe. To maintain
backward compatibility with the original DPCL, we integrate
this communication call into the existing AIS send call. On the
frontend node, the data streams from the compute nodes are
handled by a separate thread that listens on the corresponding
MRNet streams, receives all packets, and invokes the neces-
sary tool callbacks.

3.3 Integrating with BG/L Job Start Mecha-
nism

BG/L’s job launching mechanism, which is accessed using the
SLURM resource management system [2], provides the stan-
dard MPI debug interface [1]. This interface is commonly used
by parallel debuggers to identify, locate and attach to the indi-
vidual tasks of MPI applications.

We use the same services in our DPCL implementation,
which will support portability to other systems that support
the MPI debugger interface. Access to this interface is en-
capsulated in a generic MPI Application class, similar to the



Tool

MPI Application

Tool Daemon

MRNet Internal Daemon

MRNet Frontend
DPCL

Compute Nodes

I/O Nodes

External Nodes

LocationsComponents

MRNet Backend

Frontend Node

Figure 4: MRNet components and their locations.

DPCL POE Application class for IBM systems. These classes
provide a single abstraction for arbitrarily large MPI jobs using
a single object on the tool frontend.

4 DPCL Interface Extensions

The current DPCL API lacks two concepts that are vital for
an efficient implementation on large scale machines with hun-
dreds of thousand processors: a) the ability to restrict instru-
mentation to a subset of nodes and b) the ability to specify data
reduction filters for online data processing. In order to intro-
duce these capabilities, we propose to extend the DPCL API
with a probe context class.

4.1 Introducing Probe Contexts

Similar to MPI communicators, probe contexts specify sub-
sets of nodes. Once associated with a context, a probe will
then only be applied to the respective set of nodes. Further,
users can associate data aggregation or reduction operations
with each probe. These operations are installed as MRNet fil-
ters inside the reduction network nodes that are relevant to the
probe’s context when the probe is installed. All data originat-
ing from that probe is then filtered during the transfer by using
the specified aggregation operation.

For downward compatibility, a default context is automati-
cally associated with each probe when it is created. This de-
fault context comprises all nodes and specifies no data trans-
formation, and hence behaves like a traditional DPCL probe.

4.2 Selecting Nodes

The DPCL user has two ways of creating a probe context: ei-
ther a full context covering all nodes, or single context cover-
ing one rank specified as an argument to the constructor. Once
created, users can use the context class’s methods to copy or
merge contexts, add and remove individual nodes or sets of
nodes, invert node selections, or randomly sample a specified
percentage of all nodes. In addition, users can specify an arbi-

trary function in the form of a function pointer that computes
the membership based on a node’s rank.

4.3 Selecting Aggregation Routines

By default, any value generated by DPCL is passed individu-
ally to the frontend through the MRNet infrastructure. Using
MRNet’s filter concept, values can optionally be combined on
the fly while traversing the network. This reduces the amount
of communication produced by the instrumentation as well as
the computational requirements of the tool consuming the ac-
quired data.

Users can specify aggregation routines as associative and
commutative functions, which combine two values into one.
These routines must either be predefined within MRNet (e.g.,
sum, average, min, max) or be part of a separate, dynami-
cally loadable module. Once associated with a context and
activated, the DPCL infrastructure dynamically loads the nec-
essary modules into all MRNet daemons that are part of the
specified context and uses the routines to combine all incom-
ing data packets from the previous levels of the MRNet tree.
The resulting data value is then passed to the next level of the
tree for further processing. At the last level, the MRNet tree
then passes a single value to the consuming tool.

5 Preliminary Results

Our experiments were conducted on ubgl, a 1024 node Blue
Gene system at LLNL that functions as a development and
test system. Its configuration is similar to the full BG/L except
that each I/O node serves eight compute nodes (instead of 64).

Our experiments measure the cost of data transfer through
our BG/L DPCL implementation. We manually instrumented
an MPI application with data transfer routines that send a pre-
defined number of messages after they receive a start com-
mand from the tool. Each message sends a number of inte-
gers, fixed for that experiment instance. We measure the time
between sending the start command and completing the re-
ceive of the first message (latency) as well as the time between



completing the receives of the first and the last message (re-
ceive time). We vary the number of messages, the number of
nodes, the MRNet tree topology, as well as the use of aggre-
gation routines. For all experiments we report the average of
four runs.

We report measurements for messages with number of in-
tegers fixed as one, which represents a typical usage scenario
for DPCL: probes send very limited amounts of data (often just
consisting of a single value) to the frontend. We tested other
message sizes and found trends similar to those we report here.

5.1 Communication Latency

To measure the latency for the communication between the
compute nodes and the frontend, we apply the our benchmark
to a single compute node. We measured a total roundtrip time
of around 107.4 ms and consequently a latency of 53.7 ms.
This time includes the communication from the compute node
to the I/O node, the processing and forwarding of the packet
within MRNet, the communication to the frontend, and the
processing by the frontend MRNet library.

5.2 Receive Times

Figure 5 (left) shows the total receive times for varying num-
ber of messages and nodes. As expected, the time increases
nearly linearly with the communication volume. In addition,
the time increases with increasing node numbers, since the to-
tal number of messages received by the frontend is the product
of messages and node count. To further distinguish the num-
bers Figure 5 (right) shows the receive times divided by the
number of nodes. We measured the shortest times at 64 nodes,
which seems to represent a sweet spot for the transfer of data
from the compute nodes; smaller node counts performed sig-
nificantly worse, larger number of nodes slightly worse. The
latter indicates acceptable scaling properties.

5.3 Varying the MRNet Topology

In a second set of experiments, we vary the topology of the
MRNet tree and hence the locations where the individual com-
munication streams from the different nodes are merged. The
results are shown in Figure 6 for runs using eight MPI tasks
(left) and 64 MPI tasks (right).

The eight tasks case shows a clear trend: configurations that
use fewer compute nodes per I/O node, and, thus, combine a
larger number of streams at the frontend, perform better. This
is not unexpected, since the computational resources on the
frontend are larger. The same principle trend can also be seen
for 64 tasks, although much less clearly. The performance dif-
ferences between the varying topologies is reduced due to the
higher pressure on the frontend, which now has to receive data
for more nodes. This trend will continue for even larger parti-
tions showing the importance of a tree-based approach.

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of messages sent by each node

R
ec

ei
ve

 t
im

e 
[s

]

No Aggregation

Sum

Figure 7: Receive time for varying number of messages on 256
MPI tasks with and without online data aggregation.

5.4 On-line Data Aggregation

We evaluated the impact of online data aggregation in the last
set of experiments. We activated MRNet’s sum filter on all
MRNet nodes and compared the receive times with those from
the previous runs without data aggregation. Figure 7 shows
the results for 256 MPI tasks. As expected, the use of the sum
filter significantly reduces the receive times due to the reduced
number of messages and communication volume the frontend
has to consume. Instead of 256 individual messages, which
would have to be combined by the frontend, the MRNet in-
frastructure performs this aggregation on the fly and delivers a
single, aggregated value to the frontend. The actual computa-
tional work involved in the aggregation is thereby negligible.

6 Conclusions and Future Work

Binary Instrumentation is a powerful mechanism for the im-
plementation of performance analysis tools, but it comes with
new challenges when applied in the context of large scale par-
allel systems. These systems often don’t provide traditional
operating system environments on the compute nodes and their
scale demands new data collection and aggregation facilities.

We are implementing a DPCL compatible library for Blue
Gene/L that tackles these new challenges. We are modifying
DynInst to instrument remote application processes and we in-
tegrate MRNet [11], a scalable broadcast/reduction network.
We also propose to extend the DPCL interface to include probe
contexts, which enable users to select subsets of nodes for in-
strumentation, and to specify data aggregation operations.

Our DPCL implementation is close to being complete with
most key components already working. We currently finish-
ing the implementation of DynInst as well as the context class
implementation. In the next steps, we will port existing tools
using DPCL to BG/L and we will work on extending them to
take advantage of the new probe context features. In addition,
we plan on investigating various aggregation techniques im-
plemented as MRNet filters and study their impact on perfor-
mance as well as their usability for online performance analy-
sis.



0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of messages sent by each node

R
ec

ei
ve

 t
im

e 
[s

]

1

8

64

128

256

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of messages sent by each node

R
ec

v.
 t

im
e 

(r
el

. t
o

 #
n

o
d

es
) 

[s
]

1

8

64

128

256

Figure 5: Receive time for varying number of messages and nodes: total (left), per node (right).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of messages sent by each node

R
ec

ei
ve

 t
im

e 
[s

]

1x8

8x1

4x2

2x4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of messages sent by each node

R
ec

ei
ve

 t
im

e 
[s

]

64x1

32x2

16x4

8x8

Figure 6: Receive time for varying number of messages and topologies (“number of I/O nodes”x“number of computes nodes
per I/O node” : eight tasks (left), 64 tasks (right).

Acknowledgments

We would like to thank Phil Roth (Oakridge National Labo-
ratory) for his help with MRNet and Michael Brutman (IBM)
for his help with the BG/L debugger interface.

This work is supported in part by Department of Energy
Grants DE-FG02-93ER25176 and DE-FG02-01ER25510, as
well as the DOE NNSA ASC program and the DOE Office
of Science SciDAC program PERC ISIC and was performed
under the auspices of the U.S. Department of Energy by Uni-
versity of California Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48 (UCRL-CONF-215232).

References

[1] MPI Debugging Interface. http://www-
unix.mcs.anl.gov/mpi/mpi-debug/, Sept. 2005.

[2] SLURM: Simple Linux Utility for Resource Manage-
ment. http://www.llnl.gov/linux/slurm/, June 2005.

[3] N. Adiga and et al. An overview of the bluegene/l super-
computer. In Proceedings of IEEE/ACM Supercomputing
’02, Nov. 2002.

[4] B. Buck and J. Hollingsworth. An API for runtime
code patching. The International Journal of High Perfor-
mance Computing Applications, 14(4):317–329, 2000.

[5] J. DelSignore. TotalView on Blue Gene/L. Pre-
sented at ”Blue Gene/L: Applications, Architecture
and Software Workshop”, presentation available at

http://www.llnl.gov/asci/platforms/bluegene/papers/
26delsignore.pdf.

[6] L. DeRose, T. Hoover, and J. Hollingsworth. The Dy-
namic Probe Class Library — An Infrastructure for De-
veloping Instrumentation for Performance Tools. In
Proceedings of the 15th International Parallel and Dis-
tributed Processing Symposium, Apr. 2001.

[7] IBM. An Overview of the BlueGene/L Super-
computer. Whitepaper available at http://www-
fp.mcs.anl.gov/bgconsortium.

[8] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode.
OMIS — On-line Monitoring Interface Specification
(Version 2.0), volume 9 of LRR-TUM Research Report
Series. Shaker Verlag, Aachen, Germany, 1997. ISBN
3-8265-3035-7.

[9] J. May and J. Gyllenhaal. Tool Gear: Infrastructure for
Parallel Tools. In Proceedings of the 2003 International
Conference on Parallel and Distributed Techniques and
Applications, June 2003.

[10] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,
R. Irvin, K. Karavanic, K. Kunchithapadam, and
T. Newhall. The Paradyn Parallel Performance Measure-
ment Tool. IEEE Computer, 28(11):37–46, Nov. 1995.

[11] P. Roth, D. Arnold, and B. Miller. MRNet: A Software-
Based Multicast/Reduction Network for Scalable Tools.
In Proceedings of IEEE/ACM Supercomputing ’03, Nov.
2003.


